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Abstract

Of the various types of passive engine mounts, hydraulic engine mounts (HEMs) have the best noise, vibration and

harshness (NVH) performance. Based on the third type HEM, which has an inertia track, decoupler and disturbing plate,

the influences of the three hydraulic mechanisms, the length of the inertia track or the diameter of the orifice on the

dynamic properties were studied experimentally. The working principles of the hydraulic mechanisms and the relationship

between the dynamic properties of the three type HEMs were revealed clearly. It was discovered that the frequency-variant

dynamic properties of HEMs with an inertia track or an orifice have excitation amplitude-invariant fixed points. Based on

the theory of engineering hydromechanics, a nonlinear lumped parameter model (LPM) for an HEM with an inertia track

was established, and an analytical solution was obtained in which the fixed point of dynamic stiffness in-phase was

discovered theoretically. According to the phenomena of fixed points and the constant value of dynamic stiffness in-phase

at higher bands, a new parameter identification method (PIM) was presented, which is clear in theory and is time and cost

savings, the identified results are reliable. The results show that the fluid flow through an orifice can be replaced by a fluid

flow through an equivalent length of inertia track. After this, a PIM for the fluid-flow local loss factor was developed. The

identified results and the numerical simulations show that the reason the disturbing plate can keep the dynamic stiffness

lower at higher bands is that the disturbing plate can sharply increase the quadratic fluid damping due to larger local loss,

and then the resonance of the fluid flow through the decoupler channel or orifice is greatly attenuated. This conclusion is a

useful attempt to explain the working principle of the disturbing plate.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The powerplant is the main source of vibrations in vehicles. There are two important issues for powerplant
vibration isolation [1–5]: one is the support function, which means the large amplitude vibration at lower
resonance bands should be limited and reduced rapidly. This function requires the mountings to have greater
stiffness and damping. The other function is noise control, which means the mountings should effectively
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Ad decoupler area
Ai cross-sectional area of inertia track
Ap equivalent piston area of main rubber
b viscous damping coefficient of mount
bi equivalent damping coefficient of inertia

track, bi ¼ R2b̂i

b̂i damping coefficient induced by fluid
flowing in inertia track, b̂i ¼ b̂il þ b̂id

b̂id damping coefficient induced by local loss
of fluid flowing at entrance and outlet of
inertia track

b̂il damping coefficient induced by loss of
fluid flowing along inertia track

br damping coefficient of main rubber in
vertical direction

Df modified coefficient of local loss factor xd

di hydraulic diameter of inertia track, di ¼

4Ai=Li

f excitation frequency (Hz)
f1 reaction force at top end
fl frictional coefficient between the fluid

and the wall of inertia track
fn resonance frequency of fluid flowing in

inertia track (Hz)
f p, f q, f r, f s, f t fixed point frequency on

frequency- and amplitude-variant dy-
namic stiffness modulus, dynamic stiff-
ness in-phase, loss angle, dynamic
stiffness out-of-phase and viscous damp-
ing coefficient

f p
j frequency corresponding to peak loss

angle
f

p
x frequency corresponding to peak damp-

ing ratio
k, k0 dynamic stiffness in-phase and out-of-

phase, kðoÞ ¼ K cos j, k0ðoÞ ¼ K sin j
kl equivalent linear stiffness of the volu-

metric elasticity of lower chamber, kl ¼

A2
pKl

kq dynamic stiffness in-phase at fixed point
Q

krs, kr static and dynamic stiffness in-phase of
main rubber in vertical direction

ku equivalent linear stiffness of the volu-
metric elasticity of upper chamber, ku ¼

A2
pKu

k1 dynamic stiffness in-phase at higher
bands

K, K* cross-point dynamic stiffness modulus
and dynamic stiffness, Kn ¼ Kejj ¼ k þ

jk0 ¼ kð1þ jZÞ ¼ k þ job

Kn
f dynamic stiffness induced by subsystem

of inertia track fluid—upper and lower
chambers

Kr, Kn
r cross-point dynamic stiffness modulus

and dynamic stiffness (complex) of main
rubber in vertical direction, Kn

r ¼ kr þ

jobr

Kls, Kl static and dynamic bulk stiffness of lower
chamber

Kus, Ku static and dynamic bulk stiffness of
upper chamber

K1 cross-point dynamic stiffness modulus at
higher bands

li length of inertia track
l0i physical length of orifice
Li wet perimeter of cross-sectional area of

inertia track
me lumped mass of powerplant
m̂i lumped mass of fluid in inertia track,

m̂i ¼ rAili

mi equivalent mass of fluid in inertia track,
mi ¼ R2m̂i

mr equivalent lumped mass of main rubber
at top end

Pi, Qi, Ri, Si Ti (i ¼ 1–6) fixed point on
frequency- and amplitude-variant dy-
namic stiffness modulus, dynamic stiff-
ness in-phase, loss angle, dynamic
stiffness out-of-phase and viscous damp-
ing coefficient

p1, p2 fluid pressure in upper and lower chamber
R area ratio, R ¼ Ap=Ai

Rd dynamic hardening coefficient of HEM,
Rd ¼ K=Kr

Rds dynamic–static ratio of main rubber in
vertical direction, Rds ¼ kr=krs

Re Reynolds number of fluid flowing in
inertia track, Re ¼ rj _̂y2jdi=m

Rid , Ril equivalent damping coefficient of inertia
track induced by local loss factor xd at
entrance and outlet and by loss factor xl

of fluid flowing along inertia track
V1, V 2 volume of upper and lower chambers
y1 excitation displacement applied at the

top end of mount
ŷ2 reaction displacement of fluid in inertia

track
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y2 equivalent reaction displacement of fluid
in inertia track, y2 ¼ ŷ2=R

y3 displacement of the lower end of mount
y4 reaction displacement of decoupler
j loss angle of mount
j2 delay angle of ŷ2 relative to y1
Z loss tangent (loss factor, tanj) of mount
Zf loss tangent resulting from dynamic

stiffness of subsystem of inertia track
fluid—upper and lower chambers

l frequency ratio, l ¼ o=on ¼ f =f n

m viscosity of fluid in chambers
r mass density of fluid in chambers
rr mass density of main rubber
o excitation circular frequency (rad/s)
on resonance frequency of fluid flowing in

inertia track (rad/s)

xl loss factor of fluid flowing along inertia
track

xd local loss factor of fluid flowing at
entrance and outlet of inertia track, xd ¼

xd1 þ xd2

xd1 local loss factor of fluid flowing at
entrance of inertia track

xd2 local loss factor of fluid flowing at outlet
of inertia track

x0d modified local loss factor, x0d ¼ Df xd

FEA finite element analysis
FRF frequency response function
HEM hydraulic engine mount
LPM lumped parameter model
NVH noise, vibration and harshness
PIM parameter identification method
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reduce the noise in the passenger compartment induced by small amplitude vibration of the powerplant at
higher bands. This function requires the mountings to have lower stiffness and damping. These two
requirements are contradictory, and the primary aim in the development of mounting technologies is to
harmonize these two conflicting requirements.

Traditional rubber mounting cannot resolve the conflict because of the limitations of rubber material: its
low damping cannot reduce large amplitude vibration rapidly at lower resonance bands, and so greater
stiffness is needed; however, greater stiffness will result in bad noise at higher bands. On the other hand, the
performance of high damping rubber is not stable and it cannot be widely used in the automotive industry
now.

At present, hydraulic engine mounts (HEMs) have the best noise, vibration and harshness (NVH)
performance among the passive engine mounts. The HEM with an inertia track or orifice is the first type, the
one with an inertia track and decoupler is the second type, and the one with an inertia track, decoupler and
disturbing plate is the third type, as shown conceptually in Fig. 1 [6–10]. Each new type HEM has inherited the
former type’s excellence and has overcome the former type’s shortcomings in some sense.

Studies on HEMs are focused on three issues: (a) How to explain the working principles for three different
types of hydraulic mechanisms. (b) How to develop a valid lumped parameter model (LPM) to accurately
reflect the frequency- and amplitude-variant nonlinear dynamic properties at wider bands. (c) How to obtain
or identify the parameters. The three issues are closely related. To explain the working principles correctly is
the foundation for designing and developing a new HEM; a wide-band-valid LPM is a connection between the
parameters and the mount’s properties, and also the basis for the explanation of working principles, for
parameter-sensitivity-analysis and for dynamics simulation of the whole powerplant-mounting system or the
whole vehicle system; a valid LPM is always based on accurate parameters. Many studies on HEMs have been
reported [1–14]; however, there are also some aspects that have not been studied or reported on, such as the
ones outlined below:
(1)
 There are some fixed points on the frequency response function (FRF) for some damped vibration
systems. For example, there are damping-invariant fixed points on the FRFs of a damped dynamic
absorber and also on the transmission functions of a single degree-of-freedom (dof) damped vibration
system, when the system has different damping. HEM is a typical system with damping, we knew there are
fixed points on some of its dynamic properties, we want to know whether there are fixed points on all of
the dynamic properties.
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Fig. 1. Configuration schematics for the three types of hydraulic engine mounts (HEMs).
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Singh et al. [1–3] have developed a linear LPM for the HEM with an inertia track and for the HEM with
an inertia track and free decoupler based on whether the decoupler is or is not bottomed out. Colgate et al.
[4] have also developed a linear LPM for the HEM with an inertia track and a piecewise linear LPM to
incorporate the decoupler behavior for the HEM with an inertia track and free decoupler. Geisberger et al.
[11] have developed a nonlinear LPM considering the linear and quadratic fluid damping, and investigated
the corresponding numerical solutions. Patrick et al. [12] have conducted many experimental studies on
dynamic properties. Some of their experimental results have shown the existence of the fixed points on
some of the dynamic properties. In this article, it will be shown that there are fixed points on all of the
dynamic properties, i.e., dynamic stiffness modulus, dynamic stiffness in-phase, loss angle, dynamic
stiffness out-of-phase and equivalent damping coefficient.
(2)
 Generally, model parameters are obtained by taking some measurements [11,13], which requires special
equipments and is time and cost consumings. The parameter identification method (PIM) is a recently
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proposed method involving testing that can be carried out on a general elastomer test system, making it a
time- and cost-saving method.
This method was developed and used first by Colgate et al. [4] based on the linear LPM developed by
themselves. The method assumed that the equivalent piston area of the main rubber is a known parameter.
Kyprianou et al. [14] also used this method to identify the parameters for the LPM constituted of a series
of highly nonlinear differential equations developed by Freudenberg.
(3)
 The third type HEM, which has three different hydraulic mechanisms such as an inertia track, decoupler
and disturbing plate, is the most complicated among the three type HEMs. Michio [10] has done
qualitative experimental studies comparing the three types of HEMs, and found that the third type HEM
has lower dynamic stiffness than the second type. How the disturbing plate can make the dynamic stiffness
lower at higher hands is also an issue to be explained.
(4)
 There are many studies on the dynamic properties of HEMs; however, these results are not comparable
because of their difference in geometric structures. It is necessary to do quantitative comparison based on
the same structure, e.g., the same main rubber, the same upper and lower chamber and the same fluid, in
order to elucidate the inheritance and development of the dynamic properties for the three type HEMs and
then provide a guiding principle for HEM selection and design.
Fig. 2 shows the HEM structures discussed in this article. Its geometric and material parameters are listed in

Table 1. Some changes of the inertia track are made or the combination of the three hydraulic mechanisms are
reorganized. Then the influences of different hydraulic mechanisms on the dynamic properties of the HEMs
are studied experimentally, the results are compared step by step to reveal the working principles of the
hydraulic mechanisms and the relationship between the three type HEMs. The experimental results for HEMs
with different lengths of inertia tracks or with different diameters of orifices are presented to show that all of
the frequency-variant dynamic properties have fixed points under different displacement amplitude
2. A third-type HEM: 1. rubber bellow; 2. lower chamber; 3. inertia track; 4. membrane decoupler; 5. upper chamber; 6. disturbing

e; 7. main rubber.

le 1

metric and material parameters of the HEM in Fig. 2

meter Value Parameter Value

er-side diameter of the upper chamber d1/mm 30.00 Length of the inertia track li/mm 216.59

er-side diameter of the upper chamber d2/mm 76.00 Density of the main rubber rr/(kg/m
3) 1050.00

ss-sectional area of the inertia track Ai/mm2 56.90 Poisson ratio of the main rubber n 0.50

perimeter of the inertia track Li/mm 28.51 Density of the filled fluid r/(kg/m3) 980.00

raulic diameter of the inertia track di/mm 7.98 Viscosity of the filled fluid m/(Pa.s) 0.02
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excitations. And then a nonlinear LPM for HEMs with inertia track is developed based on the theory of
engineering hydromechanics, an analytical solution is obtained, which shows the excitation amplitude-
invariant fixed point on the frequency-variant dynamic stiffness in-phase theoretically. Lastly, a new PIM for
HEMs with inertia track (or orifice) and with or without disturbing plate is designed, the identified results may
be helpful to explain the effect of the disturbing plate.
2. Experimental study

2.1. Samples and experimental method

The comparability of results was the basis for this experimental study of the three type HEMs. To assure the
validity and comparability of the results, first, the rubber and rubber-metal components for samples were
manufactured on the same shift so as to ensure the consistency of vulcanization process conditions; secondly,
no air was allowed in the chambers, because air would result in distortion and lack of repeatability of dynamic
properties; thirdly, two samples were manufactured for the same configuration of HEM. The samples and the
test results were considered to be valid only if the test dynamic properties of the two samples were almost the
same as each other.

A total of 18 samples as listed in Table 2 were prepared. The test items, conditions [4] and data sampling
requirements are listed in Table 3. During testing, the mount was excited by single frequency sinusoidal signal
step by step. Then the spectra of the test time-domain signals were analyzed and the dynamic properties, i.e.,
dynamic stiffness K* (complex spring rate), dynamic stiffness modulus K, dynamic stiffness in-phase (dynamic
spring rate) k, loss angle j (or loss tangent tanj), dynamic stiffness out-of-phase (loss rate) k0 and equivalent
Table 2

Mount samples and corresponding configuration

Sample Configuration variation relative to the HEM as shown in Fig. 2

1, 2 HEM with inertia track: the first type, without the disturbing plate; the decoupler is fixed, and the length of the inertia

track is its original length li1 ¼ 216.59mm

3, 4 HEM with inertia track and decoupler: the second type, without disturbing plate

5, 6 HEM with inertia track and decoupler and disturbing plate: the third type shown in Fig. 2

7, 8 Main rubber mount, without inertia track, decoupler or disturbing plate, no filled fluid

9, 10 HEM with inertia track whose length is li2 ¼ 121.29mm; the other configurations are the same as samples 1 and 2

11, 12 HEM with inertia track whose length is li3 ¼ 75.81mm; the other configurations are the same as samples 1 and 2

13, 14 HEM with a smaller orifice whose cross-sectional area is Ai4 ¼ 144.00mm2, hydraulic diameter di4 ¼ 10.67mm and

physical length li4 ¼ 13.20mm, without inertia track, decoupler or disturbing plate

15, 16 HEM with a larger orifice whose cross-sectional area is Ai5 ¼ 785.40mm2, hydraulic diameter di5 ¼ 31.62mm and physical

length li5 ¼ 15.50mm, without inertia track, decoupler or disturbing plate

17, 18 HEM with a larger orifice the same as samples 15 and 16 and a disturbing plate the same as samples 5 and 6, without

inertia track or decoupler

Table 3

Test items and conditions for all the samples listed in Table 2

Item Condition Data sampling

Static compression Compression �18mm with velocity 10mm/min and then release 200 sampled points

Larger amplitude at

lower band (Case 1)

Static preload: compression –500 N; frequency f ¼ 2–50Hz; amplitude

A ¼ 0.4, 0.6, 0.8 and 1.0mm

32 periods and 32 points

per period

Smaller amplitude at

higher band (Case 2)

Static preload: compression –500N; frequency f ¼ 20–200Hz; amplitude

A ¼ 0.05 and 0.1.0mm

32 periods and 32 points

per period
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Fig. 3. Some test samples (left) and the test rig (right).
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Fig. 4. Static force–displacement properties of the main rubber mount: 1. sample 7; 2. sample 8.

R. Fan, Z. Lu / Journal of Sound and Vibration 305 (2007) 703–727 709
damping coefficient b were obtained [15]:

Kn ¼ Kðcos jþ j sin jÞ ¼ k þ jk0 ¼ kð1þ j tan jÞ ¼ k þ job. (1)

Tests were done on an MTS 810 Elastomer Test System. Some tested samples and the test rig are shown in
Fig. 3. Transducers were calibrated before testing. Only dynamic properties in the vertical direction were
tested.

2.2. Comparison between the dynamic properties of the three type HEMs and the main rubber mount

The static force–displacement properties of the two samples (samples 7 and 8 listed in Table 2) for the main
rubber mount are shown in Fig. 4. It can be seen that their properties were almost the same. In fact, the static
properties of all samples listed in Table 2 were consistent. These results show that the vulcanization process
conditions for these samples were stable and consistent, and the static properties of the HEMs were
determined only by their main rubber. The test average static stiffness of the main rubber between a
compression load of 400–600N was krs ¼ 149.72N/mm.

The comparison between the dynamic properties of the two samples with the same configuration shows that
the dynamic properties under lower bands, larger amplitudes excitation (Case 1 listed in Table 3) and higher
bands, smaller amplitudes excitation (Case 2 in Table 3) were also almost the same, respectively, which means
the mount assemblies and their components were consistent. This allowed us to study the influences of the
three different hydraulic mechanisms, i.e., inertia track, decoupler and disturbing plate, on the dynamic
properties of the HEMs based on their dynamic differences, and then reveal their working principles. To make
the curves are clear and legible in the following figures, only one sample’s test results are shown.
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The dynamic properties of the main rubber and the three type HEMs under Cases 1 and 2 are shown in
Fig. 5, which clearly shows the inheritance and development in dynamic properties.

2.2.1. Main rubber mount

As shown by curves 19 and 20 in Fig. 5, the dynamic stiffness modulus Kr and dynamic stiffness in-phase kr

under Cases 1 and 2 followed an almost continuously horizontal line; thus, it can be considered as a constant.
The average values from all test points of the two samples were Kr ¼ 225.17N/mm (the standard deviation
was 13.66N/mm), kr ¼ 217.84N/mm (the standard deviation was 9.15N/mm). The dynamic–static ratio was
Rds ¼ 1.46.

The loss angle was a continuous bias, whereas the damping coefficient br in the vertical direction was also a
continuously horizontal line (the curves are not shown in Fig. 5) and can be considered as a constant too. As
with the former averaging method, the average value was br ¼ 80.4� 10�3N s/mm (the standard deviation
was 9.5� 10�3N s/mm).
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2.2.2. HEM with inertia track (the first type HEM)

As shown by curves 1–4 in Fig. 5, its dynamic properties under Case 1 are drastically frequency and
amplitude variants. As the frequency increased, the lowest and peak values appeared consequently on its
dynamic stiffness modulus and dynamic stiffness in-phase, and then tended to become a horizontal line; the
peak loss angle decreased as the excitation amplitude increased; however, it was far larger than the one of the
main rubber mount. This is the very embodiment of the larger damping of the HEM.

Under Cases 2, the dynamic stiffness modulus KN and dynamic stiffness in-phase kN (curves 5 and 6 in
Figs. 5(a) and (b)) were almost superposed and tended to be a horizontal line, respectively, so they can be
considered as amplitude invariant and constant. The average values from the test points of the two samples
between 50 and 200Hz were KN ¼ 564.08N/mm (the standard deviation was 9.65N/mm), kN ¼ 540.09
N/mm (standard deviation 13.45N/mm). The ratio of KN and Kr, i.e., the dynamic hardening coefficient of
the HEM was Rd ¼ 2.51. Its loss angle (curves 5 and 6 in Fig. 5(c)) tended to be superposed with curve 20 of
the main rubber mount. This phenomenon indicated that at higher bands the damping effect of the inertia
track had disappeared and the damping of the HEM was determined entirely by its main rubber, because the
response of the fluid in the inertia track was roughly attenuated.

The test results showed that, the HEM with an inertia track has a much larger loss angle than the main
rubber mount, which is its advantage. However, at higher bands (f4 the resonance frequency of the fluid in
inertia track) the resistance of fluid flow through the inertia track is greater than the resilience of the main
rubber. This means the fluid pressure in the upper chamber fluctuates with the excitation frequency while the
fluid in the lower chamber stays under a constant pressure, and this phenomenon results in drastic dynamic
hardening and consequently a higher noise level at higher bands. This is its deficiency. Adding a decoupler to
the HEM with an inertia track will effectively eliminate this flaw.
2.2.3. HEM with inertia track and decoupler (the second type HEM)

Compared to drastically frequency- and amplitude-variant dynamic properties of the HEM with an inertia
track under Case 1, the dynamic properties of the HEM with an inertia track and decoupler (curves 7–10 in
Fig. 5) were not so drastic and converged almost together, and the peak loss angle was decreased to 381. The
decrease of the damping effect at lower bands was compensated for by lower dynamic stiffness at higher bands
as shown in curves 11 and 12. The average dynamic stiffness modulus K below 160Hz was only 260.00N/mm
and correspondingly Rd ¼ 1.15, which was less than 50% of the HEM with only an inertia track. However, the
fluid flowing channel through the decoupler consequentially induced another dof, resulting in more
complicated dynamic behavior.

As shown in Fig. 5, the dynamic stiffness modulus K reached the second lowest value of 209.29N/mm at
132Hz and the second peak value of 789.11N/mm at 180Hz. This phenomenon was induced by the dynamic
effect of the additional dof. The second peak means the HEM with an inertia track and decoupler underwent
another serious dynamic hardening, Rd ¼ 3.50. For a 4-cylinder in-line engine, the dynamic hardening band
(150–200Hz) corresponds to the second-order excitation frequency of the imbalanced reciprocating inertia
force at rotational speeds of 4500–6000 rev/min, which is the commonly used speed for passenger cars at
higher velocity. In order to reduce the noise level at higher bands, the HEM with an inertia track and
decoupler must be further modified. Adding a disturbing plate to the top of the upper chamber will drastically
decrease the second peak value and obtain lower dynamic stiffness on a wider band.
2.2.4. HEM with inertia track, decoupler and disturbing plate (the third type HEM)

As shown by curves 13–16 in Fig. 5, the dynamic properties of the third type HEM under Case 1 were
almost the same as those of the second type HEM (curves 7–10). This means adding a disturbing plate did not
have a great affect on the dynamic properties under Case 1. The second lowest value of 316.03N/mm at
132Hz and the second peak value of 402.38N/mm at 170Hz on the dynamic stiffness modulus were also
found under Case 2 (curves 17 and 18 in Fig. 5(a)), nevertheless these two values had less difference than the
ones of the second type HEM, and the curves tended to follow a horizontal line, and the average value was
only 341.57N/mm (the standard deviation was 29.90N/mm), Rd ¼ 1.52. These results show that the third type
HEMs has inherited the advantages of the previous type, i.e., it has greater damping at lower bands, and has
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also overcome the disadvantages of the previous type, i.e., it is not subject to serious second dynamic
hardening. The third type HEMs are the best passive vibration isolators.

There are several noteworthy results shown in Fig. 5. First, there seems to exist some excitation amplitude-
invariant fixed points on the dynamic properties of the HEM with an inertia track, for example, the point P1

on the dynamic stiffness modulus, the point Q1 (at 16.5Hz) on the dynamic stiffness in-phase and the point R1

on the loss angle. Secondly, the lowest value of dynamic stiffness in-phase may be negative and the
corresponding loss angle may be larger than 901. This is due to the dynamic effect of fluid flowing between the
chambers. For an ideal spring-damping isolator with no mass, its dynamic stiffness in-phase can only be
positive and its loss angle must be less than 901.

2.3. The fixed points on dynamic properties of HEMs with inertia track and a new PIM based on the fixed points

It is an interesting phenomenon that there are excitation amplitude-invariant fixed points on the dynamic
properties of the HEM with an inertia track under different amplitudes excitations. Although there are various
expressions for dynamic properties, for example K*, K, k, j, k0 and b as shown in Eq. (1), only two of them are
independent. To verify whether there are fixed points on all dynamic properties of the above expressions, three
types of HEMs (samples 1 and 2, 9 and 10, and 11 and 12 as listed in Table 2) were prepared and tested. The
inertia tracks of the samples have different lengths (li1, 2, 3 ¼ 216.59, 121.29, and 75.81mm) but the same
diameter (di ¼ 7.98mm). The test results are shown in Fig. 6.

It can be seen clearly from Fig. 6 that the fixed points do exist on all expressions of dynamic properties, i.e.,
the fixed points Pi, Qi, Ri, Si and Ti (i ¼ 1, 2, 3 for different lengths of inertia track), and the frequency of each
fixed point is different when the length of the inertia track or the expression of the dynamic properties is
different. Fig. 6 also clearly shows the frequency- and amplitude-variant dynamic properties and the influence
of the length of the inertia track.

There is abundant information at these fixed points and a new PIM can be derived based on these fixed
points and the analytical conclusions about the nonlinear LPM for HEMs with an inertia track:
(1)
 The analytical conclusion showed that the frequency fq of fixed point Q on dynamic stiffness in-phase and
the resonance frequency fn of the fluid flowing in the inertia track have the following relationship (see
Section 4):

f n ¼ f q. (2)

Therefore, the test results for fq can be used to identify fn. As shown in Fig. 6(b), the curve near the fixed
point Q is almost perpendicular to the frequency axis. The test error of dynamic stiffness in-phase
will not result in a notable change in fq, and thus the identified fn will have higher precision and be
credible.
From fixed points Q1, Q2 and Q3, which correspond to li1, 2, 3, we can know from Eq. (2) that the resonance
frequencies fn1, 2, 3 are 16.5, 21.5, and 27.0Hz, respectively.
(2)
 The analytical conclusion about the nonlinear LPM for HEMs with an inertia track showed that the
resonance frequency fn of the fluid flowing in an inertia track is (see Eq. (18a) in Section 3.3):

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai

rli

ðKu þ KlÞ

s
, (3)

where Ai is the cross-sectional area and li is the length of the inertia track, r the mass density of the fluid,
and Ku and Kl the dynamic bulk stiffness of the upper and lower chambers, respectively, which denote the
fluid pressure variation corresponding to a unit volume variation of the chamber and have a dimension of
N/m5.

As shown in Fig. 2, the rubber bellow is generally crimpled and so we can assume Kl ¼ 0. Then Ku can
be identified based on Eq. (3) from the identified fn. Owing to higher precision of fn, the identified Ku will
consequently be precise and credible. Ku is an important parameter and is determinant for the resonance
frequency fn, the frequency of the peak loss angle f p

j and the dynamic hardening coefficient Rd.
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Substituting fn1, 2, 3 and li1, 2, 3 into Eq. (3), the identified Ku1, 2, 3 is 40.1, 38.1, and 37.6GN/m5,
respectively. Regarding their average value as the dynamic bulk stiffness of the upper chamber,
Ku ¼ 38.6GN/m5.
(3)
 The analytical conclusion also showed when the excitation frequency f is equal to the resonance
frequency fn, the dynamic stiffness in-phase, kq, of an HEM with inertia track can be expressed as (see
Section 4):

kq ¼ kr þ A2
pKu, (4)

where Ap is the equivalent piston area of the main rubber, another important parameter for HEMs.
It can be seen from Eq. (4) that kq is independent of the excitation amplitude. This means the dynamic
stiffness in-phase under different excitation amplitudes will all pass through this point. This is the fixed
point Q discovered by test results.

Using the test results for kr, kq and the identified result for Ku, Ap can be identified based on Eq. (4)
theoretically in a sense. However, for the aforementioned reason, the curve of the dynamic stiffness in-
phase near the fixed point Q is almost perpendicular to the frequency axis, which means the dynamic
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stiffness in-phase is very sensitive to frequency, and a small error of excitation frequency may result in
drastic variance in dynamic stiffness in-phase, and so the identified result for Ap based on Eq. (4) would no
longer be precise or credible.
(4)
 Fortunately, the analytical conclusion again showed that the dynamic stiffness in-phase tends to be a
constant at higher bands (see Eq. (33) in Section 3.3):

k1 ¼ kr þ A2
pKu. (5)

This conclusion matches well with the test results shown by curves 5 and 6 in Fig. 5(b), which are almost
superposed and tend to be horizontal lines. As a result of being horizontal lines that are almost
perpendicular to the longitudinal axis, a larger variation of excitation frequency at higher bands will only
result in an almost smaller variation of dynamic stiffness in-phase, kN, and thus the identified result for Ap

based on Eq. (5) is more precise and credible than Eq. (4).
As the test results show all the curves of dynamic stiffness in-phase of the main rubber mount and the

HEM with inertia track at higher bands tend to be horizontal lines, the average values of kr and kN rather
than the instantaneous values can be substituted into Eq. (5). Consequently, the identified result is
Ap ¼ 2889.47mm2.
For Fig. 6 the following should be noted:
(a) From Eq. (4) it can be seen that, for the same main rubber, its dynamic stiffness in-phase and its

equivalent piston area, the bulk stiffness of the upper chamber are all uniquely determined, so HEMs
composed of the same main rubber and inertia track with different lengths should have a unique value
of dynamic stiffness in-phase at their fixed points, for example at the points Q1, Q2 and Q3 in Fig. 6(b).
In fact the test results showed that the points Q1, Q2 and Q3 stand nearly in a horizontal line, and the
slight divergence is due to individual diversity and test error.

(b) From Eqs. (4) and (5), we have kN ¼ kq, and thus the dynamic stiffness in-phase at higher bands
should also stand in the same line as the fixed points Q1, Q2 and Q3. The test results in Fig. 5(b) also
reflect this phenomenon; the small divergence is mostly due to the test error at fixed points Q1.

(c) The length of the inertia track, li, has a very complicated influence on the loss angle of an HEM with
an inertia track, as shown in Fig. 6(c). With the decrease of the length of inertia track, the peak value of
the loss angle decreases, the peak value frequency increases, and the peak becomes wider. To get
the analytical solutions for these two variables, a quintic algebraic equation must be solved.
Solving this algebraic equation theoretically would be very helpful in designing an HEM or adjusting

its properties.
2.4. The fixed points on dynamic properties of the HEM only with an orifice and the PIM for the equivalent

length of fluid flowing through the orifice

The HEM with an orifice is a special type of the HEM with an inertia track. Relative to the longer inertia
track, the physical length of the orifice is shorter or is just an orifice in a thin board. To further verify the
phenomenon about the fixed points described above, two types of samples (samples 13–16 listed in Table 2)
were prepared and tested. Their orifices had different diameters (one was smaller and the other was larger) and
different physical lengths.

Their test results are shown in Fig. 7 along with the results for the HEM with an inertia track (samples 1
and 2). As shown, there also were fixed points Pi, Qi, Ri, Si and Ti (i ¼ 4, 5) on their dynamic properties, and
their dynamic stiffness in-phase shown in Fig. 7(b) also tended to a constant. It can be said that fixed points
are a natural phenomenon for an HEM with an inertia track. The good match between the analytical
conclusions and test results indicates again the validity and universality of the nonlinear LPM and the
corresponding PIM based on fixed points presented in this article.

For uniform fluid flowing in a tube, the momentum equation between two sections can be derived from the
momentum conservation principle; this is the Bernoulli equation (see Eq. (6) in Section 3.1) [16]. The Bernoulli
equation is also applicable to a flowing line, where the parameter li is the length of the flowing line and the
effect of fluid jet should be considered to calculate the length of the flowing line.
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For an HEM with a long inertia track, the flowing line can be considered as the physical length of the inertia
track; in other words, the effect of fluid jet can be disregarded in this case, and the good match between
analytical and identified results for fq indicates this assumption is appropriate [17].

However, for an HEM with an orifice, the flowing line may be much longer than the physical length of the
orifice; in other words, the effect of fluid jet can no longer be neglected. In this case, we can regard the fluid as
flowing in an inertia track with an equivalent length li, a different parameter from the physical length of the
orifice.

The equivalent length li of an orifice can also be identified. Based on Eq. (2), the resonance frequency fn can
be identified from the fixed point Qi (i ¼ 4, 5), and then li can be determined based on Eq. (3). As shown in
Fig. 7(b), fq4, 5 ¼ 57.0, 155.0Hz for the smaller and larger orifice Ai4, 5 ¼ 144.00, 785.40mm2; the main rubber
for all samples were the same, so the formerly identified result for Ku could be used; the fluid density r is listed
in Table 1. Consequently, the identified equivalent lengths were li4, 5 ¼ 44.22 and 32.61mm, which were
markedly longer than their physical lengths 13.20 and 15.50mm, respectively.

Based on the equivalent length, an HEM with an orifice can be modeled just like the HEM with an inertia
track. So a unified nonlinear LPM for these two types of HEMs can be realized, which is helpful for dynamic
simulation of powerplant-mounting system.
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2.5. Function of the disturbing plate

The first type HEMs, i.e., HEMs only with an inertia track or orifice, are widely used in the automotive
industry due to their simple configuration, larger damping at lower bands and lower price; however their
seriously dynamic hardening at higher bands is unacceptable.

The test results in Section 2.2 show clearly the disturbing plate can make the dynamic stiffness of the third
type HEMs markedly lower than the second type at higher bands.

Therefore, it is natural to suppose that the disturbing plate may also be able to reduce the dynamic
hardening coefficient effectively for the first type HEMs. Consequently another type of sample, an HEM with
a larger orifice and a disturbing plate (samples 17 and 18 listed in Table 2) was prepared and tested. These
samples had the same orifices as samples 15 and 16 and the same disturbing plate as samples 5 and 6.

The test results are shown in Fig. 8 along with the results of the HEM only with the same orifice (samples 15
and 16). At higher bands (4150Hz) the dynamic stiffness modulus and the dynamic stiffness in-phase of the
HEM with a larger orifice and a disturbing plate (curves 3 and 4 in Figs. 8(a) and (b)) are drastically lower
than the ones of the HEM only with the same orifice (curves 1 and 2), while the loss angle (shown in Fig. 8(c))
has not been changed markedly and the fixed points P6, Q6, R6, S6 and T6 are still in existence [17] (curves not
shown entirely here).

Thus, it can be concluded that adding a disturbing plate to the first type HEMs can also make their dynamic
stiffness markedly lower at higher bands.

The parameter identification results (see Section 5) show that the reason the disturbing plate can
significantly decrease the dynamic stiffness at higher bands is that its disturbing action on the fluid field
drastically increases the quadratic nonlinear fluid damping, which consequently attenuates the resonance
response of the fluid flowing through the decoupler channel or the orifice.
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3. The nonlinear LPM for HEM with inertia track

The test results in Sections 2.3–2.5 have revealed the fixed points of the HEMs with an inertia track or an
orifice (with or without a disturbing plate). In this section, a nonlinear LPM considering the linear and
quadratic fluid flowing damping and its analytical solution are presented. The nonlinear LPM identifies the
fixed points on dynamic stiffness in-phase, and agrees well with the experimental results. And then the
proposed PIM described in Section 2.3 is discussed theoretically and systematically in Section 4.

3.1. Nonlinear LPM for vibration isolation

Referring to the schematic diagram of the HEM with an inertia track as shown in Fig. 9(a), its upper side is
connected to the powerplant and the lower side to the chassis frame. The following assumptions were made:
the excitation displacement at the powerplant side is y1 and the corresponding reaction force is f1, with the
upward direction being positive; the displacement of fluid flowing relative to the inertia track is ŷ2, with
positive direction from the lower to upper chamber; the displacement at the chassis side is y3; the fluid pressure
in the upper and lower chamber is p1 and p2, respectively; and the force transferred to the chassis frame is f T .
These are the variables in the LPM.

The LPM uses the following parameters: dynamic stiffness in-phase and viscous damping of the main rubber
in the vertical direction are kr and br, its equivalent lumped mass at the upper side is mr (including the metallic
connecting piece); the equivalent piston area of the main rubber is Ap; the dynamic bulk stiffness of the upper
and lower chambers is Ku and Kl ; the length and cross-sectional area, wet perimeter, and hydraulic diameter of
the inertia track are li and Ai, Li and di, respectively; the loss factor of fluid flowing along the inertia track, xl , is
64mli=ðrj _̂y2jd

2
i Þ when the Reynolds number Re is less than 2320 (see Ref. [16]), the local loss factor of fluid

flowing at the entrance and outlet of the inertia track is xd1 and xd2, and the total local loss factor
xd ¼ xd1 þ xd2. These parameters are generally measured by means of special experiments or identification.

Based on the Bernoulli equation [16] for non-stationary flow, the momentum equation in integral form for
fluid flowing in an inertia track can be derived as follows:

rli
€̂y2 þ

1
2
rðxl þ xdÞj

_̂y2j
_̂y2 ¼ p2 � p1. (6)

Fluid in the inertia track flows on a horizontal plane which is orthogonal to the direction of y1 and y3. The
following continuity equations in integral form represent the fluid in the upper and lower chambers,
respectively:

KuðAiŷ2 � Apy1 þ Apy3Þ ¼ p1; �KlAiŷ2 ¼ p2. (7,8)

The force equilibrium equation for lumped mass mr and the force transferred to the chassis frame f T are as
follows:

mr €y1 þ krðy1 � y3Þ þ brð _y1 � _y3Þ ¼ f 1 þ App1, (9)

f T ¼ krðy1 � y3Þ þ brð _y1 � _y3Þ � App1. (10)
Fig. 9. Physical and equivalent mechanical models for an HEM with an inertia track: (a) physical model, (b) equivalent mechanical model.
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Let R ¼ Ap=Ai, m̂i ¼ rAili, mi ¼ R2m̂i, b̂il ¼ rAixlj
_̂y2j=2, b̂id ¼ rAixd j

_̂y2j=2, b̂i ¼ b̂il þ b̂id , bi ¼ R2b̂i,
y2 ¼ ŷ2=R, ku ¼ A2

pKu, kl ¼ A2
pKl , N ¼ ku=kr. Substituting these parameters into Eqs. (6)–(10) and

eliminating intermediate variables p1 and p2, we have

mr €y1 þ br _y1 þ ðkr þ kuÞy1 � kuy2 ¼ f 1 þ ðkr þ kuÞy3 þ br _y3, (11)

mi €y2 þ bi _y2 � kuy1 þ ðku þ klÞy2 ¼ �kuy3, (12)

f T ¼ br _y1 þ ðkr þ kuÞy1 � kuy2 � ðkr þ kuÞy3 � br _y3, (13)

where ku and kl have a dimension of N/m and so can be regarded as the equivalent linear stiffness of bulk
stiffness Ku and Kl. Usually R approximates to 50, which makes mi be in the same order of magnitude as the
mass of the powerplant [7].

3.2. Nonlinear LPM for dynamic properties

The equivalent lumped mass at the upper side, mr, will drastically influence the drive-point dynamic
properties. However, in a powerplant-mounting system, mr is fastened to the rigid body of the powerplant, me;
its mass contribution to the whole system can be neglected because mr5me and so we can let mr ¼ 0, and then
let y3 ¼ 0 to study the dynamic properties. Based on these two assumptions, we have f T ¼ f 1 from Eqs. (11)
and (13), which means the drive-point dynamic properties are equal to the cross-point ones, and the
differential equations for dynamic property analysis can be written as below. The equivalent mechanical
model for these equations is shown in Fig. 9(b):

mi €y2 þ bi _y2 � kuy1 þ ðku þ klÞy2 ¼ 0, (14)

br _y1 þ ðkr þ kuÞy1 � kuy2 ¼ f 1. (15)

Substituting the original parameters into Eqs. (14) and (15), we have

€̂y2 þ
32m

rd2
i

þ
xd

2li

j _̂y2j

 !
_̂y2 þ

AiðKu þ KlÞ

rli

ŷ2 ¼
ApKu

rli

y1, (16)

f 1 ¼ kry1 þ br _y1 þ A2
pKuy1 � ApAiKuŷ2. (17)

Eqs. (16) and (17) are the governing equations for an HEM with an inertia track. From the first equation, ŷ2

can be determined by excitation y1, and then f 1 can be determined from the second equation and then p1 and
p2 can be obtained from Eqs. (7) and (8). It can be seen that the dofs are uncoupled.

3.3. Analytical solution for nonlinear dynamic properties

As shown in Eq. (16) the fluid flowing in the inertia track is just like a single dof vibration system. The
parameters in its stiffness item have the following characteristics: the geometric parameters Ai and li are
constants; the fluid is incompressible and r is a constant; the test and FEA results show Ku is also a constant;
Kl is smaller by two orders of magnitude than Ku due to the crimpled rubber bellow. So the stiffness item is a
constant. For the parameters in its damping item, the damping induced by the loss factor of fluid flowing
along the inertia track, Ril ¼ 32m=rd2

i , is a linear damping, and the one induced by the local loss factor at the
entrance and outlet, xd j

_̂y2j=2li, is a quadratic nonlinear damping. Methods of multiple scales and averaging-
based perturbation analytical conclusions show [18], as in the case of linear damping, that the resonance
frequency is not affected by quadratic damping to its order. Therefore, for the vibration system with quadratic
damping as shown in Eq. (16), its resonance frequency can be regarded as the frequency of the corresponding
linear vibration system. Then the resonance frequency of fluid flowing in an inertia track can be written as
below:

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai

rli

ðKu þ KlÞ

s
; on ¼ 2pf n. (18a,b)
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Eq. (18) means the frequency is closely related to the bulk stiffness values of the upper and lower chambers,
and the two bulk stiffness values have a parallel connection. Eq. (3) for PIM in Section 2.3 comes from
Eq. (18) here.

Results of testing and numerical simulation show [17] that, under excitation of sinusoidal displacement y1,
the responses of p1, p2, ŷ2 and f1 are almost sinusoidal at the same frequency. Thus, the responses can be
written in the following forms:

y1 ¼ Y 1e
jot; ŷ2 ¼ Ŷ 2e

jðot�j2Þ; f 1 ¼ F1e
jot. (19)

where Y 1 and Ŷ 2 are positive amplitude, and j2 is the delay angle of ŷ2 to y1. Under these circumstances, the
quadratic fluid damping can be regarded as an equivalent linear damping, Rid ¼ 4xdoŶ 2=3pli, based on the
energy conservation principle. Then Eq. (16) becomes

€̂y2 þ
32m

rd2
i

þ
4xd

3pli

oŶ 2

 !
_̂y2 þ o2

nŷ2 ¼
Ap

rli

Kuy1. (20)

Substituting y1, ŷ2 and f 1 from Eq. (19) into Eqs. (20) and (17), we obtain

ðo2
n � o2ÞŶ 2e

�jj2 þ jo
32m

rd2
i

þ
4xd

3pli

oŶ 2

 !
Ŷ 2e

�jj2 ¼
Ap

rli

KuY 1, (21)

F1 ¼ krY 1 þ jobrY 1 þ A2
pKuY 1 � ApAiKuŶ 2e

�jj2 . (22)

The FRF of fluid flowing in inertia track can be written in the form below from Eq. (21):

Hf ¼
Ŷ 2

Y 1
e�jj2 ¼

Ap

Ai

Ku

Ku þ Kl

1

1� l2 þ jðCl=on þDŶ 2l
2
Þ
, (23)

where C ¼ 32m=rd2
i , D ¼ 4xd=3pli, l ¼ f =f n ¼ o=on.

As shown by Eq. (23) the expression of Hf has an unknown variable, Ŷ 2, which can be solved by the
following searching method: for a given excitation amplitude Y 1, increase Ŷ 2 from zero gradually and
compute the corresponding Hf . If jHf jY 1 ¼ Ŷ 2, then Ŷ 2 can be regarded as the response amplitude of ŷ2 and
Hf as the frequency response. The searched curve for Y 1 ¼ 1.0mm, f ¼ 15Hz is shown in Fig. 10. Numerical
simulation-based experiments show that the searched curves for other excitation amplitudes and frequencies
are similar to Fig. 10, which means the solution for Ŷ 2 has good properties and the searching method can
guarantee the numerical precision and the reliability of Ŷ 2 and Hf [17]. The calculated amplitude- and phase-
frequency response characteristics of fluid flowing in an inertia track are shown in Fig. 11, where the
delay angle of 901 indicates the phase resonance when the excitation frequency is equal to the resonance
frequency f n.

Substituting Eq. (23) into Eq. (22), the dynamic stiffness can be written in the form

Kn ¼ k þ jk0 ¼ F1=Y 1 ¼ Kn

r þ Kn

f , (24)
Y1=1 mm,  f =15 Hz
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Fig. 10. The search results for displacement–response amplitude for fluid flowing in inertia track.
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where Kn
r ¼ kr þ jobr is dynamic stiffness of the main rubber, and Kn

f ¼ A2
pKu � ApAiKuHf is dynamic

stiffness induced by the subsystem of inertia track fluid and chambers.
Based on Eq. (24), the dynamic properties of an HEM with an inertia track can be investigated theoretically:
(1)
 l! 0
Considering Kl5Ku leads to

Hf 0 � Ap=Ai; Kn

f 0 � 0, (25,26)

Kn

0 ¼ k0 þ jk00; k0 ¼ kr; k00 ¼ 0, (27,28,29)

where the subscript 0 indicates the corresponding value at f ¼ 0Hz.
As shown in Eq. (25), Hf 0 is a positive real number, which means ŷ2 and y1 are in-phase and the fluid
pumped by the piston area of the main rubber is pumped into the lower chamber in-phase, and there is no
pressure fluctuation in the chambers. Therefore, the dynamic stiffness of the HEM is contributed mainly
by the main rubber. This conclusion agrees well with the experiment.
(2)
 l!1

Hf1 ! 0; Kn

f1 ¼ A2
pKu, (30,31)

Kn

1 ¼ k1 þ jk01; k1 ¼ kr þ A2
pKu; k01 ¼ obr, (32,33,34)

where the subscript N indicates the corresponding value at higher bands (ðfbf nÞ). Eq. (5) for PIM in
Section 2.3 comes from Eq. (33) here.
As shown in Eq. (30), the displacement response of fluid flowing in inertia track is drastically attenuated
and the connection between the upper and lower chambers through the inertia track is cut off at higher
bands. Under these circumstances, the fluid pumped by the piston area of the main rubber is
accommodated entirely by the upper chamber due to its elasticity of bulk, thus leading to pressure
fluctuation. As shown in Eq. (31), the value of A2

pKu can be regarded as the equivalent linear stiffness of
the volumetric elasticity of the upper chamber, which indicates the comprehensive effect of the piston area
and the bulk stiffness and also indicates the increment of dynamic stiffness at higher bands.
As shown in Eq. (33), the dynamic stiffness in-phase at higher bands is a superimposition of kr and A2

pKu.
Results of testing and FEA show that the parameters kr, Ap and Ku can be regarded as constant [17], so k1
tends to be a constant too. This analytical conclusion matches well with the test results shown in Fig. 5(b),
in which the curves of dynamic stiffness in-phase become a horizontal line at higher bands.
(3)
 l ¼ 1,

Hf 1 ¼
Ŷ 2

Y 1
e�jj2 ¼ �j

Ap

Ai

Ku

Ku þ Kl

on

C þ onDŶ 2

. (35)
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Because Y 1 and Ŷ 2 are positive real numbers, and then Hf 1 is a purely imaginary number that is
negative, then j2 must be p=2 and the vibration is designated as phase resonance when the excitation
frequency is the resonance frequency of the fluid. According to the fact that the real and imaginary parts
on both sides of the equal sign are equal, respectively, we obtain

onDŶ
2

2 þ CŶ 2 � onEY 1 ¼ 0, (36)

where E ¼ ApKu=AiðKu þ KlÞ.
Solving Eq. (36), considering that Ŷ 2 is a positive real number, we obtain

Ŷ 2 ¼
�C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 4o2

nDEY 1

q
2onD

. (37)

Substituting Ŷ 2 from Eq. (37) into Eq. (35) and then into Eq. (24), we obtain

Hf 1 ¼ �j
2onE

C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 4o2

nDEY 1

q ; Kn

f 1 ¼ A2
pKuð1þ jZf Þ, (38,39)

Kn

1 ¼ k1 þ jk01; k1 ¼ kr þ A2
pKu; k01 ¼ obr þ A2

pKuZf , (40,41,42)

j1 ¼ arctan
obr þ A2

pKuZf

kr þ A2
pKu

 !
, (43)

Zf ¼
2ðKu=ðKu þ KlÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai=rliðKu þ KlÞ

p
ð32m=rd2

i Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð32m=rd2

i Þ
2
þ 4ð4xd=3pliÞðAp=rliÞKuY 1

q , (44)

where the subscript 1 indicates the corresponding value at f ¼ f n.
As shown in Eqs. (43) and (44), some parameters can be selected to adjust the delay angle j1 as follows:
(a)
 Viscosity of the liquid, m : decreasing m can augment j1. Kazuto et al. [19] used four types of fluid, whose
viscosity was decreased gradually by one order of magnitude from 1.693� 10�3 to 1.765, to optimize the
vibration isolation performance of the powerplant-mounting system and obtained a better result. This was
accomplished by the effect of viscosity.
(b)
 Hydraulic diameter of the inertia track, di: for the same cross-sectional area of the inertia track, Ai, the
larger the hydraulic diameter, the larger the loss angle. This is the reason that the cross-sectional area is
usually in the shape of a circle.
(c)
 Excitation displacement amplitude, Y 1: the smaller the Y 1, the larger the Zf and then the larger the j1.
This is the fundamental reason that the HEM with an inertia track has amplitude-variant dynamic
properties. This conclusion agrees well with the test results shown in Fig. 6(c).
(d)
 Length of the inertia track, li: this parameter has a very complicated influence on the loss angle of an HEM
with an inertia track, as shown in Fig. 6(c). From Eq. (44), it can be seen that the parameter li is in both the
denominator and the numerator, and it is also related to the resonance frequency of fluid flowing in inertia
track shown in Eq. (18a), whereas the parameters m, di and Y 1 are just in either the denominator or the
numerator and they are independent of the resonance frequency. This phenomenon results in a
complicated influence on the loss angle. An advanced theoretical explanation for the relationship between
the analytical results of Eqs. (43) and (44) and the experimental results shown in Fig. 6(c) should be
obtained from further study. It should be noted that the parameter li is mainly used to adjust the
resonance frequency of fluid flowing in an inertia track or adjusting the peak value frequency of the
loss angle, so that the dynamic properties of the mount can match well with those of the powerplant-
mounting system.



ARTICLE IN PRESS
R. Fan, Z. Lu / Journal of Sound and Vibration 305 (2007) 703–727722
4. Parameter identification method based on the fixed points: theory

2
By comparing Eqs. (33) and (41) we know that k1 ¼ k1 ¼ kr þ ApKu. Because k1 tends to be a constant, k1

is also a constant (i.e., amplitude invariant), which means the frequency-variant dynamic stiffness in-phase
under different amplitude excitations will intersect at the resonance frequency f n and have the value of
kr þ A2

pKu. The intersection point is the fixed point Q shown in the experimental results in Fig. 6(b).
The good match between analytical and experimental results shows the correctness of the LPM and the

validity of the assumptions for its parameters. A new PIM can be developed based on the fixed points Q and
the phenomena of k1 being constant.

Setting the excitation frequency at fixed point Q as f q, and the corresponding dynamic stiffness in-phase as
kq, then we have kq ¼ kr þ A2

pKu and f q ¼ f n at fixed point Q. This is the theoretical basic for Eqs. (4) and (2)
used in Section 2.3 for PIM.

Based on Eqs. (2)–(5), we can identify the bulk stiffness Ku, the equivalent piston area Ap and the equivalent
length li of fluid flowing through an orifice, as described in Sections 2.3 and 2.4.

5. Further study on the function of the disturbing plate

The experimental and fluid–solid interaction FEA results show that the fluid flowing in the inertia track is a
laminar flow at 0–200Hz. For the nonlinear LPM developed here, the loss factor along the inertia track, xl , is
computed based on its laminar formulation and can reflect its damping effect exactly.

The local loss factor is highly dependent on the geometric configuration of the entrance and outlet. For a
small outlet on a large vessel wall, the local loss factors xd1 and xd2 can be set to 0.5 and 1.0, respectively [16].
However, for an HEM, its inertia track has a sharp bend at the entrance and outlet, and the fluid jet will result
in more energy loss. Under this case, the local loss factors xd1 and xd2 with the former values will not reflect the
damping effect exactly and therefore must be modified. The damping induced by the local loss factor, xd , is a
quadratic nonlinear damping. Colgate [4] and Geisberger et al. [11] introduced quadratic nonlinear damping
to reflect the damping effect of fluid flowing through the channel of the decoupler and their calculations agreed
with experimental results. So we can also introduce a modified coefficient to study the damping effect induced
by the local loss factor. Setting the modified coefficient to be Df , the modified local loss factor becomes

x0d ¼ Df xd , (45)

where xd ¼ xd1 þ xd2 ¼ 0:5þ 1:0 ¼ 1:5:
The parameter Df can be identified from the experimental results, which will disclose the effect of the

disturbing plate.
Substituting x0d from Eq. (45) into Eq. (6), we can see all the analytical conclusions for l ¼ 0 and1 and the

analytical dynamic stiffness in-phase for l ¼ 1 are independent of xd ; however, the dynamic stiffness out-of-
phase for l ¼ 1, being dependent on xd and excitation amplitude Y 1, will become

k01 ¼ obr þ A2
pKu

2onKu=ðKu þ KlÞ

C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 4Df DðAp=rliÞKuY 1

q . (46)

This equation can be rewritten as

4Df DðAp=rliÞKuY 1 ¼ G2 � 2GC, (47)

where G ¼ ð2A2
pKuðKu=ðKu þ KlÞÞonÞ=ðk

0
1 � obrÞ.

As shown in Eq. (47), Df can be identified from the experimental results of k01 under different excitation
amplitudes by the least squares method.

For an HEM with only an orifice, the identified result for Df indicates the local loss induced by the entrance
and outlet, while for an HEM with both an orifice and disturbing plate, Df indicates the total local loss
induced by the entrance, outlet and the disturbing plate. The difference will indicate the quantity of loss
induced by the disturbing plate.

The identified results of Df for four different types of channels (i.e. inertia track, smaller orifice, larger
orifice, larger orifice with disturbing plate) are listed in Table 4. It can be seen that the modified coefficient Df
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Table 4

Identified results of modified coefficient of the local loss factor for different types of HEMs

Type of HEM (channel type) Modified

coefficient Df

The experimental data used

HEM with an inertia track 2.74 All data of Samples 1 and 2, 9 and 10 and 11 and 12 under excitation amplitude

A ¼ 0.4, 0.6, 0.8 and 1.0mm

HEM with a smaller orifice 10.62 All data of Samples 13 and 14 under excitation amplitude A ¼ 0.05 and 0.10mm

HEM with a larger orifice 46.50 All data of Samples 15 and 16 under excitation amplitude A ¼ 0.05 and 0.10mm

HEM with a larger orifice and a

disturbing plate

95.91 All data of Samples 17 and 18 under excitation amplitude A ¼ 0.05 and 0.10mm
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is just 46.50 for the HEM with only a larger orifice, whereas it is 95.91 for the HEM with the same orifice and a
disturbing plate. So the disturbing plate can cause the local loss factor to be almost doubled, consequently
causing the local loss-induced damping effect to increase drastically.

6. Simulations

Based on the analytical conclusions, Eq. (24), and the parameters identified in this article, the dynamic
properties for the test samples, i.e., the HEM with an inertia track, the HEM with a smaller orifice, the HEM
with a larger orifice and the HEM with a larger orifice and a disturbing plate, were simulated and compared
with the experimental results shown in Figs. 12–16.

The comparison shown in Fig. 12 is for the dynamic stiffness modulus, dynamic stiffness in-phase and loss
angle of the HEM with a smaller orifice. The simulation results agree well with the experimental ones at less
than 200Hz and exactly reflect the fixed points, the constant dynamic stiffness values at higher frequencies and
the loss angle.

The comparison shown in Figs. 13 and 14 is for the dynamic stiffness in-phase and loss angle of the HEM
with the original inertia track at lower bands (2–50Hz) and higher bands (50–200Hz), respectively. It can be
seen that the simulated loss angle at lower bands and the dynamic stiffness in-phase at higher bands agree well
with the experimental results; the simulated dynamic stiffness in-phase at lower bands and the loss angle at
higher bands agree with the tendency observed in the experimental results.

In Sections 2.2 and 2.5, it is shown from the experimental results that the serious dynamic hardening
phenomenon at higher bands is induced by the resonance of the fluid flowing through the decoupler channel or
the orifice, and that the dynamic hardening effect can be reduced drastically by adding a disturbing plate to the
top of the upper chamber.

Then in Section 5 it is shown from the parameters identified that the disturbing plate can nearly double the
modified coefficient Df and so the local loss factor x0d is also almost doubled (shown in Table 4), consequently
causing the local loss induced damping effect to increase drastically.

Thus, it may be concluded that the reason the disturbing plate can make the dynamic stiffness markedly
lower at higher bands is that its disturbing action on the fluid field enhances the turbulent flow, enlarges the
energy loss, causes the quadratic fluid damping to increase drastically, and then attenuates the resonance
response of the fluid flowing through the decoupler channel or the orifice.

To verify and repeat the conclusion about the function of the disturbing plate by simulation, the dynamic
properties for the samples, i.e., the HEM with a larger orifice (samples 15 and 16) and the HEM with a larger
orifice and a disturbing plate (samples 17 and 18), were simulated and compared with their experimental
results, as shown in Figs. 15 and 16. It can be seen that the simulated dynamic stiffness modulus at higher
bands for the HEM with a larger orifice and a disturbing plate (curves 1 and 2 in Fig. 16) are indeed much
lower than those for the HEM without the disturbing plate (curves 1 and 2 in Fig. 15).

A series of numerical-simulation-based tests showed that the larger the local loss factor x0d (i.e., the larger
the modified coefficient Df or the larger the quadratic nonlinear fluid damping), the lower the dynamic
stiffness at higher bands.
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Fig. 12. Comparison between simulation and experiment for HEM with a smaller orifice (samples 13 and 14 listed in Table 2): (a) dynamic

stiffness modulus, (b) dynamic stiffness in-phase, (c) loss angle. 1–2, simulation with excitation amplitude A ¼ 0.05 and 0.10mm,

respectively; 10–20, experiment under A ¼ 0.05 and 0.10mm.
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Fig. 13. Comparison between simulation and experiment for HEM with the original inertia track (samples 1 and 2 listed in Table 2) at

f ¼ 2–50Hz: (a) dynamic stiffness in-phase. (b) loss angle. 1–4, simulation with excitation amplitude A ¼ 0.4, 0.6, 0.8 and 1.0mm,

respectively; 10–40, experiment under A ¼ 0.4, 0.6, 0.8 and 1.0mm.
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The simulation results agree well with the tendency observed in the experimental results, so it can be said
that the conclusion about the function of the disturbing plate is reasonable and it is a useful attempt to
understand the disturbing plate.
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Fig. 14. Comparison between simulation and experiment for HEM with the original inertia track (samples 1 and 2 listed in Table 2) at

f ¼ 50–200Hz: (a) dynamic stiffness in-phase, (b) loss angle. 1–2, simulation with excitation amplitude A ¼ 0.05 and 0.10mm,

respectively; 10–20, experiment under A ¼ 0.05 and 0.10mm.
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Fig. 15. Comparison between simulation and experiment for HEM with a larger orifice (samples 15 and 16 listed in Table 2) at

f ¼ 20–200Hz: (a) dynamic stiffness modulus, (b) loss angle. 1–2, simulation with excitation amplitude A ¼ 0.05 and 0.10mm,

respectively; 10–20, experiment under A ¼ 0.05 and 0.10mm.
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Fig. 16. Comparison between simulation and experiment for HEM with a larger orifice and a disturbing plate (samples 17 and 18 listed in

Table 2) at f ¼ 20–200Hz: (a) dynamic stiffness modulus, (b) loss angle. 1–2, simulation with excitation amplitude A ¼ 0.05 and 0.10mm,

respectively; 10–20, experiment under A ¼ 0.05 and 0.10mm.
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The discrepancies between the simulation and experimental results can be attributed to the following:
experimental error in measured data; general approximation made with the lumped parameters assumption, in
which all of the parameters are considered as linear; approximation of the local loss factor, which is assumed
to be independent of the excitation amplitude and frequency; and approximation of the loss factor of fluid
flowing along an inertia track, which is calculated based on the assumption that the wall of the inertia track is
smooth.

7. Conclusions

Comparison of the experimental results indicates clearly the influence of different hydraulic mechanisms on
the dynamic properties of HEMs. Inertia tracks can only provide large damping at lower frequencies, at higher
frequencies their damping effect disappears. Decouplers can decrease the dynamic stiffness at middle bands
(40–160Hz), but they cause severe secondary dynamic hardening due to the resonance of the fluid flowing
through the decoupler channel. Disturbing plates can provide lower dynamic stiffness at wider bands (only
tested at 40–200Hz) and thus the third type HEM with an inertia track, decoupler and disturbing plate is the
best passive isolator. These conclusions should provide useful guidance for the selection and design of HEMs.

The fixed points are discovered experimentally on all of the frequency-variant dynamic properties of an
HEM with an inertia track or orifice under excitations of various displacement amplitude. The frequencies of
the fixed points are different when the lengths of the inertia track are different; the frequencies are also
different for different expressions of dynamic properties.

The analytical solution of the nonlinear LPM for an HEM with an inertia track, which is based on the
theory of engineering hydromechanics, also indicates theoretically the existence of the fixed point on the
dynamic stiffness in-phase.

Based on the fact that the analytical results match well with the experimental ones and according to the
frequency of the fixed point and the constant value of dynamic stiffness in-phase at higher bands, a new PIM
for HEMs is presented. The new PIM is clear in theory and saves time and money. The results are proven to be
reliable.

The identified results show that a disturbing plate drastically increases the quadratic nonlinear fluid
damping, and the numerical simulations show that the larger the quadratic damping, the lower the dynamic
stiffness at higher bands. Thus, it can be concluded that the main function of the disturbing plate is to enhance
the turbulent flow, enlarge the energy loss and damping effect and then to restrain the resonance response of
the fluid flowing through the decoupler channel or orifice.

How to discover the fixed points analytically on other expressions of dynamic properties besides the
dynamic stiffness in-phase requires further study, which may lead to the discovery of a new heuristic method
for nonlinear parameter identification of HEMs.

The discrepancies between the simulation and experimental results can be attributed to experimental error
in measured data and the approximation made with the lumped parameters assumption. To predicate the
dynamic properties at higher bands accurately, further work should be conducted to establish a finer model for
fluid flows that considers turbulence.
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